2017小升初奥数鸡兔同笼问题多种解决办法

2017-03-15 00:00:00少芬 小升初

  鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:今有雉兔同笼,上有十四头,下有三十八足,问雉兔各几何?要解决此题,应该说很容易,那如何快速高效呢?又能理清其中的关系,讲明道理何在吗?下面一起来看看鸡兔同笼问题的解决方法吧!

  【含义】这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

  【数量关系】第一鸡兔同笼问题:

  假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)

  假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)

  第二鸡兔同笼问题:

  假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)

  假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)

  【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。

  例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?

  解假设35只全为兔,则鸡数= ..........

阅读全文
[小升初]相关栏目推荐
查看更多
上一篇:2017年小升初数学基础题含答案 下一篇:2017小升初面试全攻略